BACK PAPER: ALGEBRA II

Date: 12th June 2019

All vector spaces considered below are assumed to be finite dimensional.

- (1) (20 points) Let V and W be vector spaces. Let ϕ and ψ be linear operators on V and W respectively. Consider the linear operator θ on $V \oplus W$ given by $\theta(v, w) = (\phi(v), \psi(w))$ for $v \in V$ and $w \in W$. Prove that the characteristic polynomial of θ is the product of the characteristic polynomials of ϕ and ψ . Give an example to show that the minimal polynomial of θ need not be the product of the minimal polynomials of ϕ and ψ .
- (2) (20 points) Let A and B be two $n \times n$ matrices with entries in a field F such that the sum the rank of A and the rank of B is strictly less than n. Show that there exist a nonzero vector $x \in F^n$ such that Ax = 0 = Bx.
- (3) (10+5+5 points) Prove or disprove using a counterexample the following statements.
 - (a) Every square matrix with complex entries is conjugate to an uppertriangular matrix with complex entries.
 - (b) Let x(t) be a column vector of functions of length n and A be a $n \times n$ complex matrix. The differential equation $\frac{d}{dt}x(t) = Ax$ has a non zero solution.
 - (c) Let (V, (·, ·)) be a vector space together with a symmetric bilinear form. Let A be the matrix of the bilinear form with respect to some basis. If det(A) = 1 then A is positive definite.
- (4) (20 points) Prove that if A is an invertible matrix over complex numbers, then A^*A is Hermitian and positive definite. Define hermitian form and give an example of a hermitian form on \mathbb{C}^2 different from the standard hermitian form.
- (5) (20 points) Let A be a real matrix that is normal and has real eigenvalues. Prove that A is symmetric.